[附件二 技術介紹]

Page1

Technology/	DBPR211: A Peripheral CB1 Antagonist			
Title	An IND Approved First-in-Class Drug Candidate for T2DM			
Technology	Biotechnology	Device/Diagnostics		
Туре	Pharmaceutical	Others:		
Contact	Name: Po-Hsuan Sung	Title: Project Manager		
Person	Telephone(work): +886-37-246	i-166 Mobile: N/A		
	ext. 35702			
	Email: phsung@nhri.org.tw			
Link	http://ibpr.nhri.org.tw/zhtw/wp-content/uploads/2019/02/New-201			
	8 NCR-of-DBPR211 20181210.pdf			
	Cannabinoid receptor 1 (CB1) is expressed in several peripheral			
	tissues related to metabolic control in addition to its abundancy in			
Technology	the central nervous system. Activation of peripheral CB1 induces			
Description	lipogenesis, gluconeogenesis and pancreatic β -cell death. In contrast,			
	blockade of CB1 leads to inhibition of lipogenesis and increase of			
	adiponectin expression, glucose uptake, and protection of β -cell			
	survival. In-depth analysis of clinical data from Rimonabant, a			
	centrally acting CB1 antagonist, has revealed that CB1 inhibition			
	confined to the body's periphery has direct beneficial effects on			
	human cardiometabolic risk factors such as insulin resistance.			
	Besides, both clinical and preclinical studies support CB1 antagonists			
	_	-	ver disease (NAFLD) including	
		•). These data imply that targeting	
	at peripheral CB1 is a therapeutic strategy for treating metabolic			
	disorders such as type 2 diabetes (T2D), obesity and non-alcoholic			
	fatty liver disease without causing the undesired psychological side			
	effects resulting from central	CB1 in	hibition.	

Page2

Intellectual	Patent title: Pyrazole compounds		
Property	Granted		
	USA (US 8,962,845B2); Taiwan, ROC (I472514); South Africa (ZA		
	201303800); Japan (特許第 5872591 號); Korea (10-1586714); China		
	(ZL201280003742.9); Australia (2012316331); Canada (CA		
	2,818,944); Russia (RU 2600983); Macao (J/002325); Hong Kong (HK		
	1187610); India (299680); Europe (7 countries, EP263291)		

	Pending PCT (PCT/US2012/056999): United Arab Emirates (application No. 567/2013); Brazil (application No. 112013013490.9)
Key Publications	 W.C. Hsiao, K.S. Shia, Y.T. Wang, Y.N. Yeh, C.P. Chang, Y. Lin, P.H. Chen, C.H. Wu, YS. Chao and M.S. Hung. A novel peripheral cannabinoid receptor 1 antagonist, BPR0912, reduces weight independently of food intake and modulates thermogenesis. <i>Diabet. Obe. Metab.</i> 17: 495-504, 2015. C.P. Chang, C.H. Wu, J.S. Song, M.C. Chou, Y.C. Wong, Y. Lin, T.K. Yeh, A.A. Sadani, M.H. Ou, K.H. Chen, P.H. Chen, P.C. Kou, C.T. Tseng, K.H. Chang, S.L. Tseng, Y.S. Chao, M.S. Hung and K.S. Shia*. Discovery of 1-(2,4-Dichlorophenyl) -<i>N</i>-(piperidin-1-yl)-4-((pyrrolidine-1-sulfonamido)methyl)-5-(5-((4 -(trifluoromethyl) phenyl)ethynyl) thiophen-2-yl)-<i>1H</i>-pyrazole-3-carboxamide as a Novel Peripherally Restricted Cannabinoid-1 Receptor Antagonist with Significant Weight-Loss Efficacy in DIO Mice. <i>J. Med. Chem.</i> 56: 9920-9933, 2013. R.S. Vijayakumar, Y. Lin, K.S. Shia, Y.N. Yeh, W.P. Hsieh, W.C. Hsiao, C.P. Chang, Y.S. Chao, and M.S. Hung. Induction of fatty acid oxidation resists weight gain, ameliorates hepatic steatosis, and reduces cardiometabolic risk factors. <i>Int. J. Obesity</i> 36: 999-1006, 2012. M.S. Hung, C.P. Chang, T.C. Li, T.K. Yeh, J.S. Song, Y. Lin, C.H. Wu, P.C. Kuo, P. K. Amancha, Y.C. Wong, W.C. Hsiao, Y.S. Chao, K.S. Shia. Discovery of 1-(2,4-Dichlorophenyl)-4-ethyl-5-(5-(2-(4-trifluoromethyl)phenyl) ethynyl) thiophen-2-yl)-<i>N</i>- (piperidin-1-yl)-1<i>H</i>-pyrazole-3-carboxamide as a potential peripheral cannabinoid-1 receptor inverse agonist. <i>ChemMedChem</i>. 5: 1439-1443, 2010.
Business Opportunity	The global population of patients with diabetes caused by excessive obesity and the improvement of the quality of life is growing rapidly, leading to an expanding market demand. Currently, only few T2D drugs show a favorable effect on weight control. Our invention exhibits potential beneficial effects on improving metabolic disorders, and thus provides an alternative for the treatment of T2D with

additional benefits in weight loss and amelioration of NAFLD. This		
unique mechanism may potentially render DBPR211 as a highly		
competitive first-in-class drug candidate for T2D, obesity and		
NAFLD/NASH.		