Technology/	Neuroprotective Agent DBPR168 against Chemotherapy-Induced			
Title	Peripheral Neuropathy			
Technology	Biotechnology	Device/Diagnostics		
Туре	Pharmaceutical	Others:		
	Name: Hua-Hsuan Liang		Title: Acting Section Chief	
Contact	Telephone(work): 886-37-		Mobile:	
Person	206166#33206			
	Email: huahsuan@nhri.edu.tw			
Link	https://ibpr.nhri.org.tw/zhtw/			
	Chemotherapy-induced neurotoxicity is a common adverse effect of			
	cancer treatment. No medication has been shown to be effective in			
	the prevention or treatment of chemotherapy-induced neurotoxicity.			
	Paclitaxel is a first-line taxane-based chemotherapeutic agent for			
	various malignancies such as breast, ovarian, and non-small cell lung			
	cancers. Unfortunately, approximately 60-70% patients develop			
	peripheral neuropathy after receiving paclitaxel, which not only			
	diminishes quality of life but even makes patients quit/suspend			
Technology Description	therapy. Therefore, it is an urgent medical need to develop effective			
	neuroprotective drugs against chemotherapy-induced peripheral			
	neuropathy (CIPN). DBPR168 has completed the proof-of-principle in			
	two behavioral mouse models of paclitaxel-induced peripheral			
	neuropathy (i.e. a tail immersion and von Frey filament test).			
	Pretreatment with DBPR168 was able to significantly alleviate both			
	paclitaxel-induced thermal hypesthesia and mechanical allodynia.			
	Mechanistically, DBPR168 appears to effectively inhibit paclitaxel-			
	induced inflammatory responses and the infiltration of immune cells			
	into sensory neurons. More importantly, DBPR168 exhibits a high			
	safety dose (MTD > 500 mg/kg, IV, mice) and a low minimum efficacy			
	dose (10 mg/kg), thus resulting in a large therapeutic window			
	(MTD/MED > 50, mice). DBPR168 may have great potential to become			
	a first-in-class neuroprotective agent to prevent chemotherapy-			
	induced peripheral neuropathy.			
Intellectual	Patent Title: Pyrimidine compounds and use thereof		and use thereof	
Property	Filed on 2022/7/29			
	US (application No. 17/877,163); ROC (application No. 111128548);			
	PCT (application No. PCT/US2022/38878)			
Кеу	Discovery of Potential Neuroprotective Agents against Paclitaxel-			
Publications	Induced Peripheral Neuropathy. J Med Chem., 2022, 65, 4767–4782.			
Business	DBPR168 will be used in cancer patients who develop peripheral			
Opportunity	neuropathy after receiving paclitaxel. The global paclitaxel injection			

market is primarily driven by the surging prevalence of cancer across
the globe. According to Precedence Research, the global paclitaxel
injection market size is predicted to be worth around US\$ 11.16 billion
by 2030 from valued at US\$ 4.51 billion in 2021, growing at a CAGR
(compound annual growth rate) of 12.5% from 2022 to 2030. The
market potential of DBPR168 will grow in tandem with the size of the
paclitaxel market.