
Technology/	DBPR22998: A Potent QPCTL (IsoQC) Inhibitor Targeting CD47-SIRP $lpha$		
Title	Axis for Cancer Immunotherapy		
Technology Type	Biotechnology	☐ Device/Diagnostics	
	☐Pharmaceutical	☐Others:	
		Oncol	ogy/Cancer Immunotherapy
	Name: Hua-Hsuan Liang Title: Acting Section Chief		Title: Acting Section Chief
Contact	Telephone(work): 886-37- Mobile: 206166#33206		Mobile:
Person			
	Email: huahsuan@nhri.edu.tw		
Link	http://		
	Introduction:		
Technology Description	CD47-SIRP $lpha$ "Do-not-eat- me" signaling axis is myeloid-		
	specific innate immune checkpoint. Cancer cells express		
	CD47 on the cell surface enable them to evade detection by		
	the innate immune system and thus avoid destruction by		
	macrophages.		
	Key Features of DBPR22998:		
	An orally bioavailable small molecule isoQC inhibitor		
	modulating CD47-SIRPa "Do not eat me" cancer immune		
	checkpoint activity		
	 Target post translational modification process of CD47 		
	protein synthesis		
	 Demonstrate potent inhibitory activity of isoQC enzyme 		
·	and effective blocking of CD47 and SIRPα interaction in		
	CD47-expression cell lines in vitro		
	 Demonstrate antibody-dependent cellular phagocytosis 		
	(ADCP) in human monocyte-derived macrophage ex vivo culture		
	❖ Demonstrate anti-tumor efficacy in combination with		
	antibody therapeutics in solid tumors and hematologic		
	cancers		
	Demonstrate more potent isoQC inhibitory activity in		
	vitro and greater anti-tumor efficacy in vivo than those of		
	the current clinical agent		

