



## DBPR22998:A Potent QPCTL (IsoQC) Inhibitor Targeting CD47-SIRPα Axis for Cancer Immunotherapy



Dr. Wan-Ching Yen **Cancer Biology** 



Dr. Chih-Hao Chen Dr. Ya-Ping Chen



Ms. Ru-Yi Chao **Project Manager** 



Dr. Hwei-Jiung Wang **Structure Biology** 

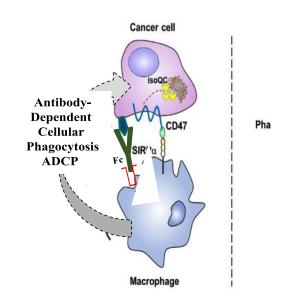


**Pharmacokinetics** 



**Dr. Teng-Kuang Yeh Dr. Chuing-Tong Chen Pharmacology** 



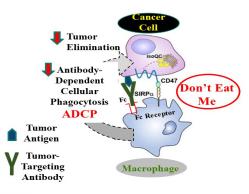

Dr. Kai-Fa Hwang **Protein Chemistry** 





# Disease Background and Global CD47 Inhibitors Market Analysis

**CD47-SIRP**α Signaling: Mask Macrophage to See Cancer Cells

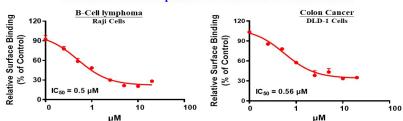



| Drug Types                                                                                                      | Highest Phase                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Biologics: 74%</li> <li>Peptides: 24%</li> <li>Others: 1%</li> <li>Small Molecules: &lt; 1%</li> </ul> | <ul> <li>Phase III: 1</li> <li>Phase II/III: 3</li> <li>Phase I/II: 7</li> <li>Phase I: 20</li> <li>IND filed: 2</li> <li>Preclinical: 54</li> <li>Biological Testing: 211</li> </ul> |
|                                                                                                                 | <ul><li>Biologics: 74%</li><li>Peptides: 24%</li><li>Others: 1%</li></ul>                                                                                                             |



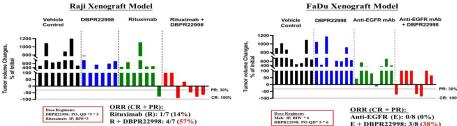
# **Product Mechanism of Action and POC Data**

#### CD47-SIRPα Signaling: Mask Macrophage to See Cancer Cells

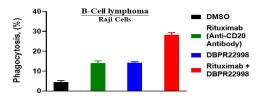



**DBPR22998:** A Potent IsoQC (QPCTL) Inhibitor Targeting CD47-SIRPa "Don't Eat Me" Signal

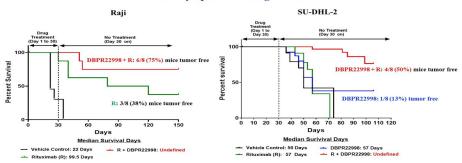



#### In Vitro Efficacy

#### DBPR22998 Blocks pGluCD47 And SIRPα-Fc Interaction




#### DBPR22998 in Combination with Therapeutic Antibody Induces Tumor Regression Raji Xenograft Model FaDu Xenograft Model


In Vivo Efficacy



#### DBPR22998 in Combination with Anti-Tumor Antibody Rituximab Enhances ADCP vs. Rituximab Alone



#### DBPR22998 in Combination with Rituximab Prolongs Post Treatment Survival in **B-Cell Lymphoma Xenograft Models**





# Competitor Landscape Analysis (Target Product Profiles)

| Parameters                                                                         | DBPR22998                                                                                                                                                                                                                             | Competitor - PQ912                                                                                                                                                                                         |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IsoQC Enzymatic assay, Ki                                                          | 0.55 nM                                                                                                                                                                                                                               | 6 nM                                                                                                                                                                                                       |
| CC2C6 Binding to pGluCD47, IC <sub>50</sub>                                        | B-Lymphoma Raji: 1.1 $\mu$ M; Ramos: 0.6 $\mu$ M Colon DLD-1: 0.6 $\mu$ M Ovarian SKOV-3: 0.2 $\mu$ M (EC <sub>50</sub> , IC <sub>50</sub> not reached) Head/Neck FaDu: 0.6 $\mu$ M (EC <sub>50</sub> , IC <sub>50</sub> not reached) | B-Lymphoma Raji: 6.0 μM; Ramos: 2.4 μ M Colon DLD1: 3.2 μM Ovarian SKOV-3: 0.4 μM (EC <sub>50</sub> , IC <sub>50</sub> not reached) Head/Neck FaDu: 2 μM (EC <sub>50</sub> , IC <sub>50</sub> not reached) |
| pGluCD47 and SIRP $\alpha$ -Fc Binding, , IC $_{50}$                               | B-Lymphoma Raji: 0.5 μM<br>Colon DLD-1: 0.6 μM                                                                                                                                                                                        | B-Lymphoma Raji: 2.9 μM<br>Colon DLD-1: 1.3 μM                                                                                                                                                             |
| ADCP (%)                                                                           | <b>B-Lymphoma Raji</b> :<br>Rituximab (R): 15%; R+ 22998: <b>28%</b>                                                                                                                                                                  | <b>B-Lymphoma Raji</b> : Rituximab (R): 15%; R+ 22998: 19.5%                                                                                                                                               |
| In Vivo Anti-tumor Efficacy (In combination with anti-tumor antibody therapeutics) | <ul> <li>B-Lymphoma Raji</li></ul>                                                                                                                                                                                                    | • B-Lymphoma Raji  Median survival days: Rituximab = 99.5 days R + 100 mpk PQ912 = 102.5 days                                                                                                              |
| Pharmacokinetics (PO, mouse:30 mg/kg; rat: 5 mg/kg)                                | AUC (ng/g*hr)  Mouse = 56,451; Rat: 3,117  F (%)  Mouse = 42 : Rat = 21                                                                                                                                                               | AUC (ng/g*hr)  Mouse = 6,359; Rat: 181  F (%)  Mouse = 82 + Rat = 16                                                                                                                                       |
| 14-day Repeated Dose Toxicity in ICR mice                                          | Mouse = 43; Rat = 31  No significant toxicity @ 100 and 300 mg/kg/day  Mild toxicity in organ weight change and mild liver enzymes by serum biochemistry analysis @ 500 mg/kg/day  No decline in RBC and platelet numbers             | Mouse = 82 ; Rat = 16                                                                                                                                                                                      |



# Product Summary including IP and publication

### **Key Features:**

- ❖ Target post translational modification process of CD47 protein synthesis
- Opportunity for combination with anti-tumor antibody therapeutics and immune checkpoint inhibitors (ICIs)

### **Intellectual Properties:**

US (US10,584,120B2), China, Taiwan, Japan, Korea, Canada, India and Australia substance patents granted; cancer indication PTC patent applications under review.

### **Market Positioning:**

Anti-CD47 monoclonal antibodies are the most extensively studies for cancer immunotherapy. As opposed to antibody approaches in clinical development, our small molecule isoQC (QPCTL) inhibitor DBPR22998 is a best-in-class and innovative therapeutic approach for boosting the efficiency of cancer immunotherapy.

## **Business Opportunities:**

License and/or collaboration and sponsored research