
Page1

Technology/	DBPR116/ An Antagonist-to-Agonist Allosteric Modulator- Pain Relief		
Title	Agent with Limited Side Effects of Opioids		
Subtitle			
Technology	Biotechnology	Device/Diagnostics	
Туре	Pharmaceutical	Others:	
	Name: Cindy Hsieh		Title: Manager
Contact	Telephone(work): +886-3724	6166-	Mobile:
Person	33209		
	Email: wenchuan@nhri.edu.tw		
Link	http://		
Technology Description	The invention relates to antagonist-to-agonist allosteric modifiers (AAM) of a mu-opioid receptor (MOR) for treating an opioid receptor- associated condition. In the presence of this unique AAM (DBPR116), MOR could be selective activated by general opioid antagonist naloxone or naltrexone, and produces antinociceptive effect without developing severe side effects in vivo. In combination with naltrexone (1 mg/kg), the median effective antinociceptive dose (ED50) of the AAM in mouse model of acute thermal pain is lower than 10 mg/kg (i.v.). DBPR116 is a crystalline solid with acceptable maximum tolerate dose (MTD > 40 mg/kg) in rodents.		

Page2

ragez			
Intellectual	US9827228B2; US10544113B; TWI625120B; TWI691332B;		
Property	EP3344997B; EP1060005; AU2017229129B; CN108883099B;		
	CN108369222B; HK1258687; HK1253294; J/005474; J/005174;		
	KR10-2365673; JP7132849; JP7181536; CA2996281		
	Shu-Yu Lin, Ya-Wen Tien, Yi-Yu Ke, Yung-Chiao Chang, Hsiao-Fu Chang,		
Key Publications	Li-Chin Ou, Ping-Yee Law, Jing-Hua Xi, Pao-Luh Tao, Horace H Loh, Yu-		
	Sheng Chao, Chuan Shih, Chiung-Tong Chen, Shiu-Hwa Yeh, Shau-Hua		
	Ueng (2022, Nov). Selective and antagonist-dependent μ -opioid		
	receptor activation by the combination of 2-{[2-(6-chloro-3,4-		
	dihydro-1(2H)-quinolinyl)-2-oxoethyl]sulfanyl}-5-phenyl-4,6-(1H,5H)-		
	pyrimidinedione and naloxone/naltrexone. Bioorganic chemistry,		
	128,105905.		
	Shu-Yu Lin, Yu-Hsien Kuo, Ya-Wen Tien, Yi-Yu Ke, Wan-Ting Chang,		
	Hsiao-Fu Chang, Li-Chin Ou, Ping-Yee Law, Jing-Hua Xi, Pao-Luh Tao,		
	Horace H. Loh, Yu-Sheng Chao, Chuan Shih, Chiung-Tong Chen, Shiu-		
	Hwa Yeh, Shau-Hua Ueng (2019, Apr). The in vivo antinociceptive and		

	μ -opioid receptor activating effects of the combination of N-phenyl-		
	2',4'-dimethyl-4,5'-bi-1,3-thiazol-2-amines and naloxone. Eur J Med Chem, 167, 312-323.		
	There remain many unmet therapeutic needs in the treatment of pain,		
	as well as high demand for analgesic treatments worldwide. In 2014,		
	the global opioids market generated revenues over \$20 billion. The		
	invention demonstrates antinociceptive effect through MOR, so it is		
	appropriate to use the DBPR116/naltrexone combination as most		
Business	opioids for the treatment of acute and chronic pain, including renal		
Opportunity	colic, acute pancreatitis, angina, post-operative pain, chronic		
	neuropathic pain, regional complex pain syndrome, chronic back pain		
	and cancer pain, with fewer side effects. Due to the novel mechanism		
	of action of DBPR116, there is few competitors relates to the		
	invention. In the future, it should be a potentially First-in-Class drug for		
	treating severe pain		

This study proposes an innovative approach by developing a unique small-molecule modulator to transform traditional opioid antagonists into powerful and low-side-effect analgesics. This research will open up a new field of opioid-like drug development and contribute to the understanding of the structural and activity changes related to opioid receptor function.