
Technology/	Method and composition for decreasing the psychotomimetic side		
Title	effect and addictive disorder of ketamine		
Subtitle	A novel method to enhance the efficacy and safety of ketamine in		
Subtitie	treating neuropsychiatric disorders		
Technology	Biotechnology	Device/Diagnostics	
Type	Pharmaceutical	Others:	
	Name: Cindy Hsieh	Title: Manager	
Contact	Telephone(work): +886-37246166-		Mobile:
Person	33209		
	Email: wenchuan@nhri.edu.tw		
Link	https://patentimages.storage.googleapis.com/99/15/e7/afdb033e85 ed9c/US11213495.pdf		
	The present invention relates to a method for decreasing the		
	psychotomimetic side effects and addictive disorders of ketamine by		
	using betaine or a betaine metabolite. Especially, the present invention		
	relates to a method for treatment of a variety of neuropsychiatric		
Technology	disorders including major depressive disorder, treatment-resistant		
Description	depression, bipolar disorder, alcohol and substance use disorders,		
	post-traumatic stress disorder, anxiety disorders, chronic pain,		
	amyotrophic lateral sclerosis, Rett syndrome, comprising		
	administrating ketamine combined with betaine or a betaine		
	metabolite N,N dimethylglycine (DMG).		
Intellectual	Taiwan, Japan, USA, Canada, Israel, Europe		
Property			
	1. Lin J, Chan MH, Lee MY, Chen YC, <u>Chen HH</u> . 2016. N,N-		
	dimethylglycine differentially modulates psychotomimetic and		
	antidepressant-like effects of ketamine in mice. Prog		
	Neuropsychopharmacol Biol Psychiatry. 71(3):7-13		
	2. Lin J, Chan MH, Lee MY, Chen YC, <u>Chen HH</u> . 2016. Betaine		
Key			
Publications	effects of ketamine in mice. Psychopharmacology 233(17):3223-		
	35		
	3. Chen ST, Hsieh CP, Lee MY, Chen LC, Huang CM, Chen HH, Chan		
	MH 2021 Betaine prevents and reverses the behavioral deficits		
	and synaptic dysfunction induced by repeated ketamine		
	exposure in mice. Biomedicine & Pharmacotherapy 144, 112369		
Business	Ketamine is a fast-acting antidepressant, and the market for ketamine		
Opportunity	clinics in USA is projected to reach USD 6.9 billion by 2030. As its		
- 15 15 2 5 35 • 1	medical use for mental health conditions grows, there has been a		
		_	

concerning rise in both illicit ketamine seizures and reports of ketamine poisoning. In response to these issues, the present invention provides an innovative solution designed to mitigate the risks associated with ketamine use, ensuring safer and more effective treatment.

Mechanism of action

Betaine exhibits antidepressant, anti-inflammatory, and antioxidant properties, and acts as a partial agonist at the glycine modulatory site of the N-methyl-D-aspartate (NMDA) receptor, potentially counteracting the adverse effects of ketamine.

